Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 Degradation

نویسندگان

  • Roger P. Leng
  • Yunping Lin
  • Weili Ma
  • Hong Wu
  • Benedicte Lemmers
  • Stephen Chung
  • John M. Parant
  • Guillermina Lozano
  • Razqallah Hakem
  • Samuel Benchimol
چکیده

The p53 tumor suppressor exerts anti-proliferative effects in response to various types of stress including DNA damage and abnormal proliferative signals. Tight regulation of p53 is essential for maintaining normal cell growth and this occurs primarily through posttranslational modifications of p53. Here, we describe Pirh2, a gene regulated by p53 that encodes a RING-H2 domain-containing protein with intrinsic ubiquitin-protein ligase activity. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of Mdm2. Expression of Pirh2 decreases the level of p53 protein and abrogation of endogenous Pirh2 expression increases the level of p53. Furthermore, Pirh2 represses p53 functions including p53-dependent transactivation and growth inhibition. We propose that Pirh2 is involved in the negative regulation of p53 function through physical interaction and ubiquitin-mediated proteolysis. Hence, Pirh2, like Mdm2, participates in an autoregulatory feedback loop that controls p53 function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1.

The cyclin-dependent kinase inhibitor p27(Kip1) is degraded in late G(1) phase by the ubiquitin-proteasome pathway, allowing cells to enter S phase. Due to accelerated degradation of p27(Kip1), various human cancers express low levels of p27(Kip1) associated with poor prognosis. S-phase kinase-associated protein 2, the F-box protein component of an SCF ubiquitin ligase complex, is implicated in...

متن کامل

JFK, a Kelch domain-containing F-box protein, links the SCF complex to p53 regulation.

The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types--MDM2, Pirh2, and COP1--and the HECT-domain type--ARF-BP1--have been reported to target p53 for de...

متن کامل

Arsenic Trioxide Reactivates Proteasome-Dependent Degradation of Mutant p53 Protein in Cancer Cells in Part via Enhanced Expression of Pirh2 E3 Ligase

The p53 gene is mutated in more than 50% of human tumors. Mutant p53 exerts an oncogenic function and is often highly expressed in cancer cells due to evasion of proteasome-dependent degradation. Thus, reactivating proteasome-dependent degradation of mutant p53 protein is an attractive strategy for cancer management. Previously, we found that arsenic trioxide (ATO), a drug for acute promyelocyt...

متن کامل

Identification of Pirh2D, an Additional Novel Isoform of Pirh2 Ubiquitin Ligase.

Pirh2 is an E3 ubiquitin ligase that promotes tumor suppressor p53 ubiquitination and proteasomal degradation. Recently, we have reported the identification and characterization of two novel isoforms of Pirh2 named Pirh2B and Pirh2C and accordingly, reclassified the full-length Pirh2 as Pirh2A. Both Pirh2B and C negatively regulate p53 and also exhibit interactions with MDM2. Here, we report th...

متن کامل

Pirh2 E3 Ubiquitin Ligase Modulates Keratinocyte Differentiation Through p63

p63, a homolog of the tumor-suppressor p53, is essential for the development of the epidermis and limbs. p63 is highly expressed in the epithelial cell layer and acts as a molecular switch that initiates epithelial stratification. However, the mechanisms controlling p63 protein levels are still far from being fully understood. Here, we demonstrate a regulatory protein for p63 activity. We found...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2003